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SUMMARY 

A un i f i ed  method is recommended f o r  p red ic t ing  ground e f f e c t s  on aircraft  
noise .  This method may be used i n  f lyover  noise  p red ic t ions  and i n  c o r r e c t i n g  
s ta t ic  tes t - s tand  data t o  free-field condi t ions .  The recommendation is based 
on a review of  r ecen t  progress  i n  the theory of  ground effects and of the  
experimental  evidence which suppor ts  t h i s  theory.  This review shows t h a t  a 
su r face  wave, a r ecen t ly  discovered effect, must be included sometimes i n  t h e  
p red ic t ion  method. Predic t ion  equat ions  are c o l l e c t e d  convenient ly  i n  a s i n g l e  
s e c t i o n  of the paper. 

Methods of  measuring ground impedance and the  r e s u l t i n g  ground-impedance 
data are a l s o  reviewed because the  recommended method is based on a l o c a l l y  
r e a c t i v e  impedance boundary model. Avai lable  data support  a s imple model of  
ground impedance, bu t  these data have s i g n i f i c a n t  scatter and it is found t h a t  
there is need f o r  f u r t h e r  data, c l a s s i f i e d  by t e r r a i n  types such as grass land  
and desert. Experiments wherein ground impedance and the  ground effects on 
noise  propagation are measured simultaneously are a l s o  needed. 

Current practice of es t imat ing  ground e f f e c t s  are reviewed and considera-  
t i o n  is given t o  p r a c t i c a l  problems i n  applying the  recommended method. These 
problems include f i n i t e  frequency-band f i l t e r s ,  f i n i t e  source dimension, wind 
and temperature g r a d i e n t s ,  and s i g n a l  incoherence.  

INTRODUCTION 

The effects of  propagation on no i se  radiated from a i r c r a f t  were reviewed 
by Putnam (ref.  1) so as t o  develop a s tandard p red ic t ion  method f o r  use by t h e  
National Aeronautics and Space Adminis t ra t ion.  Putnam's review w a s  one of sev- 
eral ,  referred t o  as "Key Technology Documents , I 1  which addressed d i f f e r e n t  
a spec t s  of a i r c r a f t  no ise  p red ic t ion .  I n  the  p a r t  of h i s  review concerned w i t h  
the ground e f f e c t s  on aircraft  no i se ,  Putnam gave concise  d e s c r i p t i o n s  of the 
ray acous t i c  a n a l y s i s  of sound r e f l e c t i o n s  by s u r f a c e s ,  of sound a t t e n u a t i o n  
over ground according t o  the Rudnick theory ,  and of  the p r a c t i c a l  problems which 
are encountered i n  outdoor a c o u s t i c  measurements. Putnam recommended empir ica l  
methods t o  p r e d i c t  ground effects on sound propagated from one ground s t a t i o n  t o  
another  and from an aircraft  t o  t he  ground. 

The present  paper updates  the  NASA ground-effects  p red ic t ion  method devel- 
oped by Putnam and is designed t o  (1 )  improve the  p red ic t ion  methods f o r  ground 
e f f e c t s  given i n  re ference  1 ,  (2) inc lude  methods f o r  c o r r e c t i n g  aircraft  
engine tes t - s tand  noise  measurements t o  free-field cond i t ions ,  ( 3 )  presen t  a 
un i f i ed  a n a l y t i c a l  p red ic t ion  method f o r  both shor t -d is tance  and long-distance 
propagation over ground, and (4) def ine  the  range of e l e v a t i o n  angle  wi th in  
which ground effects may have a s i g n i f i c a n t  effect on the measurement of  no ise  
from a i r c r a f t  i n  f l i g h t .  The p red ic t ion  scheme recommended i n  t h i s  paper is 
intended t o  supplant  previous empirical techniques w i t h  a un i f i ed  approach. 



S i g n i f i c a n t  advances have been made i n  r e c e n t  yea r s  i n  understanding t h e  
effects o f  t he  ground su r face  on outdoor sound propagat ion .  
the  r ap id  progress  i n  the  theory ,  which has occurred s i n c e  1974, has g r e a t l y  
enhanced the  a b i l i t y  t o  make p r e d i c t i o n s .  
experiment are summarized h e r e i n  and form a b a s i s  f o r  the  recommended predic-  
t i o n  procedures.  Two r e c e n t  review art icles by Embleton e t  a l .  ( r e f .  2 )  and 
Piercy  e t  a l .  ( ref .  3)  may be referred t o  f o r  s u b j e c t s  related t o  ground 
effects which are beyond the  scope o f  t h i s  paper.  

I n  p a r t i c u l a r ,  

These advances i n  theory  and 

A number o f  s i t u a t i o n s  exis t  i n  which ground effects are important i n  air- 
craft  no i se  p r e d i c t i o n  and measurement. 
munity no i se  r e s u l t i n g  from aircraft  o p e r a t i o n s ,  the  c o r r e c t i o n  o f  a c o u s t i c  
data i n  ground-based outdoor je t -engine  n o i s e  measurement t o  free-field condi- 
t i o n s ,  and t h e  i n t e r p r e t a t i o n  o f  data f o r  a i rcraf t  s i d e l i n e  and f lyove r  noise .  
Empirical  methods have been devised t o  deal w i t h  each of these s i t u a t i o n s .  

These inc lude  t h e  p r e d i c t i o n  o f  com- 

The ground su r face  is usua l ly  modeled as an i n f i n i t e  f l a t  plane on which a 
normal impedance boundary cond i t ion  is prescr ibed .  T h i s  model appears  t o  be 
adequate f o r  most s i t u a t i o n s  o f  pract ical  i n t e r e s t .  Real media such as sand, 
s o i l  ( w i t h  or without grass cove r ) ,  and snow are porous w i t h  h igh  i n t e r n a l  flow 
r e s i s t a n c e  and have poor wave propagation characterist ics.  For such media, the  
assumption o f  a l o c a l l y  r e a c t i n g  s u r f a c e  is reasonable .  The s t r o n g e s t  suppor t  
f o r  the v a l i d i t y  o f  t h e  impedance boundary theo ry  comes from the cumulative 
experimental  obse rva t ions  o f  ground effects i n  t he  p a s t  three decades. Indeed, 
P ie rcy  e t  a l .  (ref.  3 )  have ind ica t ed  t h a t  there appears  t o  be l i t t l e  need f o r  
a more e l a b o r a t e  model f o r  the  d e s c r i p t i o n  o f  ground effects. Therefore,  most 
of t he  subsequent d i scuss ion  h e r e i n  is based on t h i s  t h e o r e t i c a l  model. 

I n  some s i t u a t i o n s  the  impedance model is inadequate.  An example i s  
ground covered w i t h  a t h i c k ,  dense l a y e r  o f  vege ta t ion  (ref. 4) .  I n  t h i s  case, 
the  vege ta t ion  l a y e r  should be regarded as an  a c o u s t i c  medium having a propaga- 
t i o n  cons t an t  somewhat d i f f e r e n t  from t h a t  o f  a i r .  A s t r o n g  thermal g r a d i e n t  
i n  t h e  a i r  above the  ground can a l s o  create an  apparent  cond i t ion  o f  sound 
propagation through a layered  medium (ref.  5) .  A l aye red  s t r u c t u r e  can a l s o  
occur i n  t he  s o l i d  material o f  the  ground. I n  t he  extreme case of c l a y  or 
hard-packed s o i l ,  the  ground should be regarded as  an e las t ic  medium. A 
d e t a i l e d  d i scuss ion  of sound propagation i n  l aye red  media can be found i n  
Brekhovskikh (ref. 61, and many o the r  d i scuss ions  e x i s t  i n  the  l i t e r a t u r e  f o r  
these s p e c i a l  cond i t ions .  

Perhaps t h e  most important q u a l i t a t i v e  f e a t u r e  o f  t h e  wave f i e l d ,  which 
has been brought ou t  i n  the  r ecen t  t h e o r e t i c a l  s t u d i e s ,  is the s u r f a c e  wave. 
I n  c o n t r a s t  t o  the  more familiar wave propagation phenomena i n  three- 
dimensional space (which is cha rac t e r i zed  by a more or less uniform r a d i a t i o n  
of energy i n  a l l  d i r e c t i o n s ,  according t o  s p h e r i c a l  sp read ing) ,  the  su r face  
wave is e f f e c t i v e l y  confined t o  a reg ion  near  t h e  boundary wi th  a r e s u l t a n t  
decrease i n  amplitude w i t h  d i s t ance  determined e s s e n t i a l l y  by c y l i n d r i c a l  
spreading. An a d d i t i o n a l  a t t e n u a t i o n  of the  s u r f a c e  wave r e s u l t s  from d i s s ipa -  
t i o n  o f  energy a t  the  boundary; however, t h i s  a d d i t i o n a l  a t t e n u a t i o n  depends on 
the  va lue  o f  t he  normal impedance o f  t he  su r face .  If t h i s  a d d i t i o n a l  a t tenua-  
t i o n  is so small t h a t  the decay o f  the surface-wave amplitude is determined 
p r imar i ly  by the  c y l i n d r i c a l  spreading, t he  s u r f a c e  wave becomes the dominant 
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mode o f  propagation. Such cases are u s u a l l y  a s soc ia t ed  wi th  low-frequency 
waves f o r  real ground su r faces .  

The t h e o r i e s  o f  propagation of sound over ground which have appeared s i n c e  
1974 have now e f f e c t i v e l y  superseded the  earlier work of Ingard ,  Lawhead and 
Rudnick, and o t h e r s .  It is desirable t o  suggest a t  t h i s  p o i n t  a new p r e d i c t i o n  
method based on t h e  r e c e n t  t h e o r e t i c a l  work. I n  t h i s  paper,  the  t h e o r i e s  are 
reviewed first. Then a review o f  the e x i s t i n g  experimental  evidence of ground 
effects is g iven .  The techniques  o f  ground-impedance measurement and e x i s t i n g  
ground-impedance data are reviewed a l s o .  

Many c u r r e n t l y  accepted p r a c t i c e s  f o r  ground-ef fec ts  c o r r e c t i o n s  are 
empir ica l .  Although the  p re sen t  paper recommends a p r e d i c t i o n  method based on 
t h e o r e t i c a l  a n a l y s i s ,  some p r a c t i c a l  l i m i t a t i o n s  t y p i c a l  o f  outdoor experiments 
remain. Therefore,  a brief review is given o f  the g e n e r a l  s t a t u s  o f  s tandard  
p r a c t i c e s  i n  t he  indus t ry .  
the  a p p l i c a t i o n  of the recommended t h e o r e t i c a l  p r e d i c t i o n  method. 

T h i s  review s e r v e s  as  background informat ion  f o r  

S ince  t h e  p r e s e n t  paper concen t r a t e s  on t h e  d e s c r i p t i o n  o f  pure ground 
effects on sound propagat ion ,  the  atmosphere above t h e  ground is assumed t o  be 
homogeneous and motionless.  P e r t u r b a t i o n s ,  such as wind, temperature g r a d i e n t s ,  
and turbulence ,  have not been included i n  the d i scuss ions  mentioned previous ly .  
However, v a r i a t i o n  from t h e  ideal a n a l y t i c a l  model is  c e r t a i n  t o  occur i n  prac- 
t i c a l  a p p l i c a t i o n s .  Therefore ,  some o f  the  common problems i n  a p p l i c a t i o n  are 
d iscussed .  

THEORY OF PROPAGATION OF SOUND OVER GROUND 

A s  stated p rev ious ly ,  the  theory  o f  sound propagation over ground is 
regarded h e r e i n  as equ iva len t  t o  the theory  o f  scalar wave propagation i n  a 
uniform half-space,  which is  bounded by an i n f i n i t e  p lane  on which a cons tan t -  
impedance boundary cond i t ion  is p resc r ibed .  (The geometry of t h i s  mathematical 
model is  given i n  f i g .  1. The coord ina te  system, source  and r e c e i v e r  p o s i t i o n s ,  
t h e  direct  and the  reflected p a t h s  o f  sound propagat ion ,  and the  ang le  o f  
inc idence  are def ined  i n  t h i s  f i g u r e . )  Only the  case o f  r a d i a t i o n  by a time- 
harmonic p o i n t  source is considered here. Never the less ,  even wi th in  t h i s  
rather r e s t r i c t e d  con tex t ,  t h i s  review is not  intended t o  be exhaus t ive .  
I n s t e a d ,  it is l i m i t e d  p r imar i ly  t o  those  c o n t r i b u t i o n s  t o  the theory  which the  
au tho r s  feel are most s i g n i f i c a n t  i n  terms o f  fundamental understanding o f  t h e  
phenomenon or  else are p a r t i c u l a r l y  u s e f u l  f o r  purposes of c a l c u l a t i o n .  

Although published t h e o r e t i c a l  work on t h e  problem of r e f l e c t i o n  of waves 
by an impedance boundary dates back a t  least t o  the  1944 paper by Morse and 
Bo l t  (ref.  71, t h e  first a n a l y t i c a l  s o l u t i o n s  o f  t h i s  problem t o  be g iven  i n  a 
form s u i t a b l e  f o r  numerical  c a l c u l a t i o n s  were those  o f  Ingard (ref. 8) and 
Lawhead and Rudnick (ref.  9 ) .  For more than  two decades the papers  by Ingard 
and Lawhead and Rudnick were regarded as the s tandard  r e fe rence  works i n  t h i s  
f i e l d .  Recently,  however, a number o f  important c o n t r i b u t i o n s  t o  t h e  theo ry  
have appeared which l a r g e l y  supersede the earlier work o f  Ingard and Lawhead 
and Rudnick. 
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Of t h e  r ecen t  c o n t r i b u t i o n s ,  t he  most noteworthy are those  of Wenzel 
(ref. l o ) ,  Chien and Soroka (ref. l l ) ,  and Thomasson (ref. 12) .  Wenzel 
obtained asymptot ic  r e s u l t s ,  v a l i d  when both the  source and r ece ive r  are near  
t he  boundary, f o r  s e v e r a l  l i m i t i n g  cases determined by the  va lues  of  t he  wave 
number, propagation d i s t ance ,  and boundary admit tance.  He a l s o  found tha t ,  
under c e r t a i n  cond i t ions ,  a su r face  wave may be a s i g n i f i c a n t  component of  the  
t o t a l  wave f i e l d .  Wenzel was apparent ly  the  first t o  poin t  ou t  the  ex i s t ence  
and impl ica t ions  of  the su r face  wave i n  the gene ra l  case, al though Brekhovskikh 
(ref. 13) had noted previously t h a t  a su r face  wave occurs  i n  the  s p e c i a l  case 
i n  which the  boundary impedance is purely imaginary. Wenzel a l s o  noted t h a t ,  
i n  a c e r t a i n  asymptot ic  l i m i t ,  h i s  so lu t ion  d i f fe rs  from Ingard ' s  by j u s t  t he  
surface-wave term. However, because these two a u t h o r s  used completely differ-  
e n t  methods, the reason fo r  t h i s  discrepancy was not  apparent .  

Chien and Soroka a l s o  obta ined ,  as d i d  Wenzel, asymptotic s o l u t i o n s  f o r  
var ious  l i m i t i n g  cases. Their  r e s u l t s ,  however, are v a l i d  more gene ra l ly  than 
a r e  Wenzel's, p a r t i c u l a r l y  with regard t o  t he  case i n  which the  source and 
r ece ive r  are not  n e c e s s a r i l y  loca ted  near the  boundary. Indeed, it appears  
t h a t  the var ious  approximate s o l u t i o n s  obtained by Chien and Soroka cover v i r -  
t u a l l y  a l l  p r a c t i c a l  s i t u a t i o n s  of i n t e r e s t ,  provided only tha t  the  f i e l d  po in t  
is a t  l e a s t  s e v e r a l  wavelengths from the  image source (a condi t ion  which i s  
almost always met i n  p r a c t i c e ) .  For t h i s  reason,  their r e s u l t s  are used he re in  
as  t h e  basis f o r  the recommended p red ic t ion  method. 

Chien and Soroka a l s o  found tha t ,  i n  a c e r t a i n  l i m i t i n g  case, t h e i r  solu-  
t i o n  d i f f e r s  from Ingasd ' s  by a surface-wave term, t h u s  confirming the  d iscrep-  
ancy noted previous ly  by Wenzel. However, the  explana t ion  of fe red  by Chien and 
Soroka f o r  t h i s  discrepancy,  which they ascribed t o  t h e  l i m i t e d  range of va l id -  
i t y  of a c e r t a i n  asymptot ic  expansion used by Ingard i n  t h e  eva lua t ion  of h i s  
approximate s o l u t i o n  (see ref. 1 1 ,  s ec .  5.2.21, r e v e a l s  t h a t  t hese  au tho r s  d i d  
not  f u l l y  g ra sp  the  s ign i f i cance  of the missing surface-wave term i n  Inga rd ' s  
s o l u t i o n ,  which is now known t o  be the  r e s u l t  of a fundamental e r r o r  i n  
Inga rd ' s  a n a l y s i s .  This  e r r o r  was brought ou t  i n  a subsequent paper by 
Thomasson (ref. 121, who showed t h a t  Ingard,  i n  t h e  process  of deforming t h e  
path of i n t e g r a t i o n  of a c e r t a i n  contour i n t e g r a l  occurr ing i n  h i s  a n a l y s i s ,  
fa i led t o  take  proper  account of a pole  i n  t he  in tegrand .  It is  t h i s  po le  
which g ives  r i s e  t o  the surface-wave term. 

The effect o f  Inga rd ' s  e r r o r  is t o  restrict  t h e  range of  v a l i d i t y  of h i s  
so lu t ion  t o  e s s e n t i a l l y  those values  of the boundary admittance f o r  which t h e  
surface-wave term does not  appear.  A c a r e f u l  examination of Rudnick's s o l u t i o n  
shows t h a t ,  al though it was derived by a d i f f e r e n t  approach than was Inga rd ' s ,  
it is s u b j e c t  t o  a similar r e s t r i c t i o n .  I n  c o n t r a s t ,  t he  more recent  results, 
s ince  they take e x p l i c i t  account of t he  surface-wave term, are not  sub jec t  t o  
t h i s  r e s t r i c t i o n  and, indeed,  a r e  v a l i d  f o r  a l l  va lues  of the  boundary 
admittance.  

-'The s i t u a t i o n  i n  acous t i c s , -  as regards  t h e  belated recogni t ion  of t h e  
importance of the  su r face  wave, t h u s  c o n t r a s t s  markedly w i t h  t h a t  i n  e l e c t r o -  
magnetic theory ,  i n  which context  t he  s u r f a c e  wave has been the  sub jec t  of 
much d iscuss ion ,  as w e l l  as cons iderable  controversy,  f o r  over ha l f  a century.  
(See, e .g . ,  refs. 14 and 15.) 
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I n  the  same paper (ref. 121, Thomasson a l s o  gave an exac t  s o l u t i o h  (essen-  
t i a l l y  a cor rec ted  vers ion  of Ingard ' s  exac t  s o l u t i o n )  i n  t he  form o f  an i n t e -  
gral which appears t o  be s u i t a b l e  f o r  numerical c a l c u l a t i o n .  T h i s  r e s u l t  is 
suggested as a supplement t o  the approximate r e s u l t s  of Chien and Soroka i n  the  
recommended p red ic t ion  method. 

Thomasson (ref.  16) has a l s o  given an approximate s o l u t i o n ,  obtained from 

Recent con t r ibu t ions  t o  the theory have a l s o  been given 
h i s  exac t  s o l u t i o n ,  which is e s s e n t i a l l y  a co r rec t ed  vers ion  of Ingard ' s  
approximate so lu t ion .  
by Donato (refs. 17 and 18), Briquet and F i l i p p i  (ref.  191, and Van Moorhem 
(ref.  20) .  

EXPERIMENTS ON PROPAGATION OF SOUND OVER GROUND 

Experiments regarding ground a t t e n u a t i o n  commenced as soon as the differ-  
ence between the  nature of  wave systems f o r  sound propagation over a f la t  
boundary and those  pred ic ted  by ray a c o u s t i c s  o r  plane wave theory was recog- 
nized.  Rudnick and Oncley made outdoor measurements of ground a t t e n u a t i o n  
effects a t  Duke Universi ty  as e a r l y  as 1945. 
t a l  r e s u l t s  on sound propagation over a finite-impedance boundary were those of 
Rudnick ( r e f .  21) .  He used commercial acous t i c  absorbing materials such as 
f iber  glass i n  p lace  of the  ground as boundary su r faces .  The exp'eriments were 
la ter  continued and extended by Lawhead and Rudnick (ref. 9 ) .  I n  both refer- 
ences ,  detailed a n a l y s i s  accompanied the experimental  observa t ions .  Among the  
more important conclusions of these s t u d i e s  were the  following: 

The first s i g n i f i c a n t  experimen- 

(1 )  The sound pressure  ampl i tude  is observed t o  a t t e n u a t e  according t o  
rm2 a t  l a r g e  va lues  of k r  away from the  sound source where r i s  the radial  
d i s t ance  and k is the  wave number. This  observat ion is d i s t i n c t l y  d i f f e r e n t  
from the  expected free-field a t t e n u a t i o n  of sound p res su re  amplitude w i t h  d i s -  
tance a t  the  r a t e  of 

(2 )  The d i s t ance  a t  which the  rate of a t t e n u a t i o n  r-2 is a t t a i n e d  

r - I ,  according t o  s p h e r i c a l  spreading.  

depends on frequency as w e l l  as t h e  impedance of the  ground. It t akes  place a t  
a s h o r t e r  d i s t ance  f o r  a su r face  w i t h  low impedance than f o r  a s u r f a c e  w i t h  
high impedance. 

( 3 )  A t  a given ho r i zon ta l  d i s t ance  away from the  sound source ,  the  minimum 
received sound pressure  o f t en  occurs a t  a f i n i t e  d i s t ance  above the  boundary. 

Later s t u d i e s  by Ingard (ref.  221, Oleson and Ingard ( r e f .  231, and Wiener 
and Keast (ref.  24) confirmed much of these same basic phenomena of ground 
effects on sound propagation. I n  p a r t i c u l a r ,  Ingard made an important observa- 
t i o n  wi th  r e spec t  t o  the geometr ical  conf igura t ion  where both the  source and 
the r ece ive r  are above the ground. H e  pointed ou t  that  the  excess  a t t e n u a t i o n  
r e s u l t i n g  from d e s t r u c t i v e  i n t e r f e r e n c e  between the direct  and reflected sound 
paths  w a s  determined mainly by the impedance of  t h e  ground su r face .  The phase 
s h i f t  o f  ground r e f l e c t i o n  a t  near-grazing incidence can e a s i l y  exceed 1600 i f  
computed according t o  t y p i c a l  va lues  of  a c o u s t i c  impedance of  n a t u r a l  ground 
su r faces .  Maximum d e s t r u c t i v e  i n t e r f e r e n c e  can be reached by an a d d i t i o n a l  
geometr ical  pa th  d i f f e r e n c e  of 0.05 wavelength such t h a t  t h e  t o t a l  mismatch 
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between the d i rec t  and the reflected sound waves is ha l f  a wavelength a t  t h e  
po in t  o f  measurement. The ground effect  i n  such a geometry is heav i ly  biased 
toward d e s t r u c t i v e  i n t e r f e r e n c e .  Consequently, the  peak reg ion  of t h e  excess  
a t t e n u a t i o n  spectrum is much broader and occurs  a t  o t h e r  f r equenc ie s  than those  
p red ic t ed  by us ing  ray a c o u s t i c s  and a boundary o f  i n f i n i t e  impedance. I n  ref- 
e rences  22 and 24 the  observed peak of excess  a t t e n u a t i o n  l i e s  between 300 and 
600 Hz. 

A s  is t y p i c a l  o f  many o f  these f i e l d  experiments,  t h e  ground effect i s  

The atmospheric nonuni formi t ies  u s u a l l y  inc lude  turbulence  and o f t e n  
o f t e n  observed toge the r  w i t h  p reva len t  atmospheric effects on sound propaga- 
t i o n .  
wind and temperature g r a d i e n t s .  The experiments by Ingard have ind ica t ed  t h a t  
t h e  ground a t t e n u a t i o n  effect  can be s tud ied  and observed s e p a r a t e l y  from most 
of the atmospheric effects.  

Some important r e fe rence  data on open-field ground effects were obta ined  
by Parkin and Scholes (refs.  25 and 26) .  Measurements were made t o  s tudy  the  
combined effects  o f  t he  ground and wind vec to r  on sound propagation i n  a ho r i -  
z o n t a l  d i r e c t i o n .  There were a c t u a l l y  two groups o f  data. Each of these was 
taken i n  a d i f f e r e n t  a i r f i e ld  where an unobstructed open f i e l d  was a v a i l a b l e .  
I n  both cases, a jet  engine of 334-kN s t a t i c  t h r u s t  was used as the  sound 
source.  Acoustic measurements were made s imul taneous ly  a t  e ight  microphones 
pos i t ioned  between 20 and 1100 m away from t h e  sound source.  
60 sets o f  measurements were taken i n  each group throughout t h e  year. 

Approximately 

The data obtained by Parkin and Scholes are important f o r  t h e  fo l lowing  
reasons: 

(1 )  Attenuation o f  sound owing t o  ground effect is measured f o r  a wide 
range of h o r i z o n t a l  d i s t a n c e s  and provides  a basis f o r  t he  v e r i f i c a t i o n  o f  
t h e o r e t i c a l  c a l c u l a t i o n s .  I n  p a r t i c u l a r ,  the  data sets wi th  zero-vector wind 
cond i t ions  are r e p r e s e n t a t i o n s  o f  t he  ground effects ,  d i s tu rbed  only  by turbu- 
lence  but no t  by o t h e r  meteoro logica l  effects. 

( 2 )  Typica l ly ,  data s c a t t e r i n g  occurs  i n  f i e l d  measurements. S ince  mea- 
surements are repea ted  many times over the  same ground environment, the  statis-  
t i ca l  confidence l e v e l  o f  t he  data set  as a whole is great ly  enhanced. 

(3) I n  cases where upwind cond i t ions  are p reva len t ,  r ay  a c o u s t i c  t h e o r i e s  
p r e d i c t  t he  formation o f  shadow zones. However, d i s c u s s i o n s  i n  r e f e r e n c e s  24 
and 25 i n d i c a t e  t h a t  t h e  observed boundary or shadow zone is frequency depen- 
dent.  A t  low f r equenc ie s ,  such shadow-zone boundaries may no t  be observable .  
Recent t h e o r i e s  i n d i c a t e  t h a t  such data may provide a d d i t i o n a l  c l u e s  t o  the  
behavior o f  t he  surface-wave term (ref. 27).  

( 4 )  Measurements were made a t  two d i f f e r e n t  s i tes w i t h  similar arrange- 
ments and under similar weather cond i t ions .  Values o f  excess  ground a t t enua -  
t i o n  are d i f f e r e n t ,  whereas the  o v e r a l l  characterist ics remain similar. Fur- 
thermore, va lues  of excess  ground a t t e n u a t i o n  show n o t i c e a b l e  change w i t h  
season a t  each s i te .  Hence, t h i s  data set can se rve  as an i n d i r e c t  r e fe rence  
f o r  the  c h a r a c t e r i z a t i o n  of ground-impedance va lues  o f  grass land .  
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The determination o f  the a c o u s t i c  impedance o f  t y p i c a l  ground s u r f a c e s  is 
an important f a c t o r  of t h e  ground-effects p r e d i c t i o n  procedure. The s t u d i e s  o f  
Delany and Bazley ( refs .  28 and 29) marked the beginning of s e r i o u s  considera- 
t i o n s  o f  apply ing  the  theory  t o  pract ical  p r e d i c t i o n s .  Based on t h e i r  assump- 
t i o n  t h a t  t h e  a c o u s t i c  impedance of s o i l  and g ra s s l and  can be modeled as typ i -  
cal porous material, c a l c u l a t i o n s  were made t o  p r e d i c t  va lues  of excess  ground 
a t t e n u a t i o n .  The r e s u l t s  compared favorably  w i t h  the data obtained by Park in  
and Scholes. I n  most comparisons the  geometr ica l  conf igu ra t ion  d e a l t  w i t h  
r e l a t i v e l y  s h o r t  d i s t a n c e s  w i t h  the  source and r e c e i v e r s  above t h e  ground. 
The su r face  wave w a s  no t  considered s i n c e  t h e  c a l c u l a t i o n s  were based on the 
earlier t h e o r i e s  developed by Ingard and Rudnick. 

I n  r e fe rences  30 and 31 a comprehensive approach was taken i n  t h e  exper i -  
mental observation o f  ground effects. Experiments were designed t o  observe 
both short-range ( less  than  20 m) and long-range (over  300 m >  ground effects 
on sound propagation. The ground impedance was measured toge the r  w i t h  t h e  
a c o u s t i c  data. Hence, t h e o r e t i c a l  p r e d i c t i o n s  can be q u a n t i t a t i v e l y  c o r r e l a t e d  
t o  the a c o u s t i c  measurements. I n  the short-range experiments,  good agreement 
is obtained between theo ry  and experiments,  r ega rd ing  t h e  amplitude and loca- 
t i o n  o f  the i n t e r f e r e n c e  p a t t e r n s .  However, l o c a l  d i sc repanc ie s  a t  a s p e c i f i c  
frequency can be s e v e r a l  decibels. I n  the  long-distance experiment, t h e  mea- 
surements have shown t h a t  sound a t t e n u a t i o n  owing t o  ground effects can be pre- 
d i c t e d  wi th  estimated average impedance va lues .  

I n  re ference  27, P i e rcy ,  Donato, and Embleton used estimated va lues  o f  
ground impedance t o  p r e d i c t  ground effects and compared them w i t h  t he  measure- 
ments obtained by Park in  and Scholes (refs. 25 and 26) .  Piercy  e t  a l .  referred 
t o  t h e  var ious  components of t h e  wave f i e l d  by name. The d i rec t  wave, t h e  
reflected wave, and the  su r face  wave are defined the same way as i n  the  p resen t  
paper.  The ground wave, however, refers t o  a term i n  the asymptotic s o l u t i o n  
p ropor t iona l  t o  r2. 
Parkin and Scholes. The comparison shows t h a t  the direct-wave, the  reflected- 
wave, and the  ground-wave components are o f  equa l  importance f o r  sound propaga- 
t i o n  over s h o r t  d i s t a n c e s .  A t  longer  d i s t a n c e s ,  t he  high-frequency sound 
t ransmiss ion  is dominated by the combination of the direct-  and reflected-wave 
components, and the rece ived  sound i n  low f r equenc ie s  is dominated by the  
surface-wave component. Reference 30 provides  an important v e r i f i c a t i o n  for 
t h e  co r rec tness  of the advanced t h e o r e t i c a l  work, and it stresses t h e  impor- 
tance  o f  the surface-wave component f o r  sound t ransmiss ion  i n  the lower 
f requencies .  

The computed r e s u l t s  agree very  w e l l  w i t h  the  data of 

The dominance o f  the  direct- and reflected-wave combination a t  long d i s -  
t ances  leads t o  an  i n t e r e s t i n g  conclusion. The excess  ground a t t e n u a t i o n  i n  
t h i s  region is a simple func t ion  of the  magnitude o f  the  complex-valued acous- 
t i c  impedance and t h e  e l e v a t i o n  angle  o f  t h e  sound source .  I n  r e fe rences  27, 
30, and 32 t h i s  r e l a t i o n  was considered as a way t o  estimate the  ground imped- 
ance by means of the excess  ground a t t e n u a t i o n  measurements. However, a n  
e x p l i c i t  explana t ion  was not  given f o r  the r e l a t i v e  d e c l i n e  o f  the ground-wave 
term a t  long d i s t a n c e s .  An a n a l y s i s  of t he  r e l a t i v e  importance of the p lane  
wave approximation is given i n  the appendix. 
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The previous ly  mentioned experimental  i n v e s t i g a t i o n s  represent  a sequence 
of  n a t u r a l  development i n  which the ground effects are observed a t  i n c r e a s i n g  
l e v e l s  of  complexity and p rec i s ion .  Furthermore, the comparison between theory  
and experiment has established t h a t  t he  theories can accu ra t e ly  describe the  
phys ica l  p r o p e r t i e s  of  ground effects on sound propagation. Therefore,  
computer-based p r e d i c t i o n  procedure f o r  ground effects can be established on a 
s o l i d  foundation. 

GROUND IMPEDANCE 

Methods of Measuring Impedance 

One key ques t ion  r e l a t i n g  t o  t h e  s tudy of  sound propagation over ground 
which has not  ye t  been s a t i s f a c t o r i l y  answered is t h a t  of the best method of  
measuring t h e  ground impedance. Although a number of  d i f f e r e n t  approaches t o  
measuring the  impedance of the ground have been i n v e s t i g a t e d ,  none has emerged 
as being c l e a r l y  s u p e r i o r  under a l l ,  o r  even most, of  the commonly occurr ing  
measurement cond it i o n s .  

Impedance tube.-  O f  t h e  var ious  methods which have been t r i ed ,  the most 
s t ra ight forward  is the  ord inary  impedance-tube method. I n  t h i s  approach, t he  
impedance t u b e  is placed v e r t i c a l l y  on the ground (sometimes the  tube  is dr iven  
s e v e r a l  inches i n t o  the  ground t o  provide a better seal between the  end of the  
tube and the  ground) ,  and the  measurements are made i n  t he  usua l  way. 
technique has been app l i ed  t o  a sand surface by Dickinson and Doak (ref. 32) 
and t o  grass land  by Embleton e t  a l .  (ref. 2). 

This  

The main advantages of t he  impedance-tube method are the  a v a i l a b i l i t y  of 
t h i s  instrument  and t h e  s i m p l i c i t y  of its opera t ion .  
although the  impedance tube  would appear t o  be s u i t a b l e  f o r  t e r r a i n  such as 
g r a s s ,  sand, and smooth s o i l ,  i ts usefu lness  i n  t h e  case of su r faces  such as 
g rave l  o r  rough s o i l ,  as w e l l  as any su r face  covered by a dense layer of vege- 
t a t i o n ,  is doubtful  owing t o  poss ib l e  d i f f i c u l t i e s  i n  providing a proper seal 
between the su r face  and the end of t he  tube.  An a d d i t i o n a l  drawback, which is 
c h a r a c t e r i s t i c  of i n t e r f e r e n c e  techniques i n  gene ra l ,  is  t h a t  t he  impedance- 
t u b e  method r e q u i r e s  accurate measurements to  be made of t he  d i s t ance  from 
the  ground t o  the first i n t e r f e r e n c e  minimum of  t h e  standing-wave p a t t e r n  i n  
t h e  tube,  wi th  the  requi red  accuracy inc reas ing  w i t h  frequency. This  requi re -  
ment p laces  an upper bound on t h e  frequency range f o r  which t h i s  method is 
p rac t i cab le .  

On the  o t h e r  hand, 

Free f i e ld . -  I n  order  t o  avoid some of the d i f f i c u l t i e s  involved i n  apply- 
i ng  the  impedance-tube method t o  real ground surfaces, Dickinson and Doak 
(ref. 32) have proposed an a l t e r n a t e  approach, which they ca l l  the  free-field 
method. The bas i c  experimental  setup c o n s i s t s  of  a sound source pos i t ioned  
above the  ground toge the r  with a microphone which is allowed t o  move along a 
v e r t i c a l  a x i s  between the  source and the ground. By probing the i n t e r f e r e n c e  
p a t t e r n  e x i s t i n g  between t h e  source and the  ground, t he  ground impedance can 
be deduced. A more detailed desc r ip t ion  of  the  appara tus  is given i n  
re ference  32. 
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The main advantage of  the free-field method, compared t o  the impedance- 
tube  technique, is t h a t  no tube  o r  o the r  wave-guiding appara tus  is rGquired, 
and hence the  problem of  providing a proper seal between the  tube  and the  
ground s u r f a c e  is avoided. Since the  free-field method is, however, an i n t e r -  
fe rence  technique,  it is sub jec t  t o  the  same frequency l i m i t a t i o n  as is the  
impedance-tube method. A n  a d d i t i o n a l  d i f f i c u l t y ,  which plagues i n t e r f e r e n c e  
techniques gene ra l ly ,  may arise i n  the case of su r faces  such as t h i c k  g r a s s ,  
rough s o i l ,  etc.,  i n  which there is  no obvious well-defined ground s u r f a c e  t o  
use as a re ference  f o r  measurements. I n  such cases ,  it is  necessary t o  de f ine  
a ground-surface re ference  l e v e l  t o  be used as a basis f o r  impedance measure- 
ments. A l l  subsequent a c o u s t i c  measurements, such as source and r ece ive r  
he ights ,  should then be based on t h i s  r e fe rence  l e v e l .  

Inc l ined  track.- A v a r i a n t  of the  free-field method, known as the  
inc l ined- t rack  method, has been used with some success  by Embleton e t  a l .  
(See ref. 2.) With t h i s  technique,  impedance measurements can be made a t  any 
angle  of inc idence ,  i n s t e a d  of only a t  v e r t i c a l  inc idence  as wi th  t h e  free- 
f i e l d  method. The inc l ined- t rack  method thus  provides  a means of  t e s t i n g  the  
hypothesis  t h a t  the ground impedance is  independent of inc idence  angle .  

Since the  inc l ined- t rack  method is a l s o  an i n t e r f e r e n c e  technique,  it is 
s u b j e c t  t o  t he  same l i m i t a t i o n s  mentioned previously i n  connection w i t h  t h e  
impedance-tube and free-field methods, namely, those a r i s i n g  from the  requi re -  
ments f o r  a very accu ra t e ly  def ined geometry and very accu ra t e  measurements, 
though these r e s t r i c t i o n s  become progress ive ly  less severe  i n  changing the 
angle  from normal t o  graz ing  incidence.  I n  order  t o  avoid these d i f f i c u l t i e s ,  
a number of a l t e r n a t e  techniques f o r  measuring ground impedance have been pro- 
posed. Among these  are what might be c a l l e d  c u r v e - f i t t i n g  techniques (ref. 16,  
sec. V I I ;  ref. 33,  p. 115; and ref. 341, the  bas i c  idea of which is t o  deduce 
the ground impedance by f i t t i n g  c a l c u l a t e d  curves,  obtained by i n s e r t i n g  
assumed va lues  of the  impedance i n t o  the appropr i a t e  propagation theory ,  to  
the obtained measurements of  the sound f i e l d .  Since t h i s  process  involves ,  of 
necess i ty ,  a c e r t a i n  amount of  t r i a l  and e r r o r ,  these methods are, from a 
s t r i c t l y  computational po in t  of view, not  as s a t i s f y i n g  as the  more sys temat ic  
i n t e r f e r e n c e  techniques.  An a d d i t i o n a l  drawback of t h i s  type of approach is 
tha t  the experimenter f r equen t ly  needs an i n i t i a l  es t imate  of the ground imped- 
ance t o  be su re  that  extraneous effects, such as the  su r face  wave, are not  con- 
taminat ing the  measurements. 

D i rec t -p re s su re -ve loc i ty  measurements.- Since s p e c i f i c  a c o u s t i c  impedance 
is ,  by d e f i n i t i o n ,  the  complex r a t i o  of sound pressure  t o  p a r t i c l e  v e l o c i t y ,  
a direct  measurement of these two parameters would seem t o  be an obvious approach 
t o  impedance measurement. However, t h e  only small microphone w i t h  a response 
p ropor t iona l  t o  v e l o c i t y  is a hot-wire device which is fragile and h ighly  non- 
l i n e a r .  C i r c u i t r y  which l i n e a r i z e s  t he  response a l s o  al ters the  phase so t h a t  
measurement by t h i s  method becomes very complicated. T h i s  method has been used 
i n  the l abora to ry ,  u sua l ly  t o  measure the impedance of a p e r t u r e s  a t  very high 
sound pressures  (see ref. 351, b u t  it does not appear promising f o r  outdoor 
measurements. 
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Pressure-gradien t  measurements.- Although i n t e r f e r o m e t r i c  measurements are 
normally made a t  nodal and a n t i n o d a l  p o i n t s  f o r  convenience, the  s u r f a c e  imped- 
ance can a c t u a l l y  be determined from amplitude and phase measurements a t  o t h e r  
p o i n t s .  Mechel ( ref .  3 6 )  has o u t l i n e d  a method which appears  t o  have some 
advantages f o r  on - s i t e  measurements. By comparing the  sound p res su res  and 
t h e i r  phases a t  two small microphones, which are c l o s e l y  spaced on an a x i s  nor- 
mal t o  the  s u r f a c e ,  Mechel has shown t h a t  the  real component o f  t he  a c o u s t i c  
admittance is  p r o p o r t i o n a l  t o  t he  g r a d i e n t  o f  phase change w i t h  height and t h a t  
the  imaginary component is p r o p o r t i o n a l  t o  the  g r a d i e n t  o f  the  sound p res su re  
l e v e l .  The g r a d i e n t  is d i r e c t l y  p ropor t iona l  t o  the s u r f a c e  admittance i f  t h e  
measurements are made very  nea r ly  a t  the s u r f a c e ,  b u t  t h e  admittance can be 
c a l c u l a t e d  from g r a d i e n t  measurements which are made some d i s t a n c e  away. If 
t h e  microphones are too  c l o s e  t o  the  s u r f a c e ,  t he i r  r e f l e c t i o n s  a l ter  t h e  mea- 
sured  va lue  o f  s u r f a c e  impedance, so  t h a t  t h i s  method w i l l  become more u s e f u l  
as very  small microphones become a v a i l a b l e ’ a n d  the accuracy of phase measure- 
ments is improved. If the  g r a d i e n t  is  not measured very near  the  s u r f a c e ,  t h e  
b e s t  accuracy is obta ined  from measurements which are made near  a nodal p o i n t  
where t h e  phase g r a d i e n t  is large; hence d i f f e r e n t  measuring p o s i t i o n s  may be 
needed f o r  d i f f e r e n t  f r equenc ie s .  

Calcu la t ion  from f l i g h t  no i se  data.- I n  aircraft  f l y o v e r  no i se  measure- 
ments, a c o u s t i c  data are o f t e n  recorded s imul taneous ly  us ing  a microphone which 
is mounted above t h e  ground and a microphone which is flush-mounted on t h e  
ground p lane .  Ground-impedance information can be e x t r a c t e d  from the  ground 
i n t e r f e r e n c e  p a t t e r n  i n  the  a c o u s t i c  spectrum rece ived  by the  raised microphone. 
A t  a given i n t e r f e r e n c e  minimum or  maximum, the  magnitude o f  the  r e f l e c t i o n  
c o e f f i c i e n t  a t  t h e  ground s u r f a c e  can be determined by the  r a t i o  o f  t he  mea- 
sured sound p res su re  amplitude t o  the expected sound p r e s s u r e  amplitude a t  
free-field cond i t ions .  The frequency o f  t h e  i n t e r f e r e n c e  minimum or maximum i s  
determined by the path d i f f e r e n c e  and the  phase s h i f t  f a c t o r  o f  t he  r e f l e c t i o n  
c o e f f i c i e n t .  S ince  t h e  d i f f e r e n c e  i n  geometr ica l  path is known, t h e  phase fac- 
t o r  o f  the  r e f l e c t i o n  c o e f f i c i e n t  can be computed. The ground-surface imped- 
ance can be computed from t h e  r e f l e c t i o n  c o e f f i c i e n t  provided t h a t  t he  ang le  o f  
inc idence  is no t  near  t he  zone of g raz ing  inc idence  such t h a t  ray a c o u s t i c  
approximations are v a l i d .  I n  order  t o  get meaningful impedance data, a c c u r a t e  
p o s i t i o n  data o f  t he  source must be a v a i l a b l e  and the  no i se  data must be ana- 
lyzed on a narrow-band basis s i n c e  one-third-octave s p e c t r a  p a r t l y  concea l  t h e  
minimums and maximums. This  method cannot r e v e a l  t h e  e n t i r e  func t ion  of imped- 
ance as a func t ion  o f  frequency. The e f f e c t i v e  va lue  o f  ground impedance cal- 
cu la t ed  from a p a r t i c u l a r  minimum may be presumed t o  be v a l i d  only near  the  
frequency where it is measured. 

Ground-Impedance Data 

Measurements o f  a c o u s t i c  impedance o f  t h e  ground can be traced back t o  t h e  
e a r l y  work by Nyborg e t  a l .  ( ref .  37). However, the  first systematic i n v e s t i -  
g a t i o n  o f  ground-impedance measurements appears  t o  be the  work by Dickinson and 
Doak (ref.  32). Many types  of ground s u r f a c e s  were examined i n  t h e i r  work. 
These included sand ,  n a t u r a l  and t i l l e d  s o i l ,  s h o r t  grass, ch ip  g r a n i t e ,  and 
some o t h e r s .  Some o f  the t y p i c a l  data are g iven  i n  f i g u r e  2. One o f  t he  most 
i n t e r e s t i n g  obse rva t ions  was the  effect  o f  mois ture  on the a c o u s t i c  impedance 
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o f  s o i l .  P e r f e c t l y  dry  sand gave the  highest impedance, whereas the  lowest 
impedance came when 6 t o  10 percent  o f  moisture by weight was added. Larger 
amounts o f  moisture increased  the impedance. Dickinson specula ted  that  small 
amounts o f  moisture caused g r a i n s  i n  the  s o i l  t o  s t i c k  toge the r ,  thereby crest- 
ing  larger pores ,  bu t  w i t h  larger amounts o f  water t h e  pores  were flooded. 

A s u b s t a n t i a l  amount o f  ground-impedance data is given by Embleton, P i e rcy ,  
and Olson (ref. 2 ) .  The s i g n i f i c a n c e  o f  t h e i r  data is tha t  s e v e r a l  methods have 
been used i n  the  measurements. Cross-referencing among d i f f e r e n t  sets o f  data 
can provide a better understanding o f  the v a r i a b i l i t y  o f  ground-impedance mea- 
surements. Furthermore, t h i s  data group has es tab l i shed  a t r end  f o r  the  depen- 
dence o f  impedance as a func t ion  o f  frequency over an extended range. Ot.her 
d a t a  o f  ground impedance are given by Thomasson ( ref .  16) and Lanter  (ref.  34 ) .  
Some data on the a c o u s t i c  p r o p e r t i e s  o f  snow are a l s o  a v a i l a b l e  from T i l l o t s o n  
(ref. 38). 

A set o f  data f o r  a crushed s tone  f i e l d  f i l l e d  t o  a depth o f  approximately 
38 cm over a well-drained subsur face  is given by R .  H. Urban i n  unpublished 
correspondence t o  the A-21 Committee f o r  Aircraft Noise Measurement o f  t h e  
Socie ty  o f  Automotive Engineers.  Only the  magnitude o f  t h e  a c o u s t i c  admi t tance  
is given. This  set o f  da t a  has been converted t o  the  magnitude of impedance as 
a func t ion  o f  frequency and shown i n  f i g u r e  3. I n  t he  same f i g u r e ,  t h e  d a t a  
f o r  chipped g r a n i t e  obtained by Dickinson e t  a l .  (ref.  32) and the  data f o r  
g ra s s l and  given by Embleton e t  a l .  ( re f .  2 )  are g iven  f o r  comparison. 

Another source o f  ground-impedance da ta  comes from t h e  i n d i r e c t  expe r i -  
ments o f  Delany and Bazley ( ref .  28) .  I n  t h i s  work, t he  a c o u s t i c  impedance o f  
porous media is obtained as a func t ion  of frequency and flow r e s i s t e n c e  o f  t he  
porous a c o u s t i c  material. By assuming that  t h e  s o i l  is a t y p i c a l  porous medium, 
the a c o u s t i c  impedance o f  s o i l  as a func t ion  o f  frequency can be es t imated .  
Delany and Bazley (ref.  28) used t h i s  technique t o  compare t h e o r e t i c a l  c a l c u l a -  
t i o n s  of ground effects w i t h  measured a c o u s t i c  d a t a ,  and fair  agreement w a s  
ob ta ined .  
w i t h  the data repor ted  by Embleton, P i e rcy ,  and Olson is given i n  f i g u r e  4. I n  
a r ecen t  s tudy ,  Chessell ( ref .  39) computed va lues  o f  ground impedance by us ing  
t h e  same model as Delany and Bazley but  wi th  a higher va lue  o f  a i r  r e s i s t a n c e .  
A much be t te r  agreement wi th  data was obta ined .  
i n  f i g u r e  4.  

Some comparison o f  the  estimated ground impedance us ing  t h i s  method 

The comparison is shown a l s o  

The a c t i v i t i e s  i n  ground-impedance measurement so  far have genera ted  s u f -  
f i c i e n t  data t o  e s t a b l i s h  t r e n d s  f o r  expected va lues  o f  ground impedance. How- 
eve r ,  t h e  d a t a  are i n s u f f i c i e n t  f o r  r a t i n g  a l l  s u r f a c e s  commonly encountered i n  
aircraft no i se  measurement. For 'example, none o f  the  ground cond i t ions  i n  t he  
p rev ious ly  mentioned d a t a  group can adequately match the semidesert country o f  
t h e  western United S t a t e s  where many f lyove r  tests are performed. 
impedance d a t a  c o l l e c t e d  so far tend t o  fo l low the  same t r end  as those  summa- 
rized by Embleton e t  a l .  (ref. 2). I n  t h i s  type  o f  data, both t h e  real and 
imaginary components o f  the impedance are decreasing func t ions  of frequency. 
I n  c o n t r a s t ,  t he  data obta ined  by Dickinson show tha t  t he  real component o f  the 
impedance remains approximately cons t an t  wi th in  t h e  frequency range o f  250 t o  
1000 Hz. 

Most ground- 
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One recognized d i f f i c u l t y  is that e x i s t i n g  methods o f  ground-impedance 
measurement produce data wi th  a large amount o f  scatter. P a r t  o f  the data 
scatter is a r e s u l t  of n a t u r a l  inhomogeneity o f  the  ground-surface p r o p e r t i e s .  
Better methods f o r  ground-impedance measurement are therefore needed. Theoret- 
i ca l  modeling o f  ground impedance can a l s o  help i n  understanding the behavior 
of ground impedance. I n  a d d i t i o n  t o  the  s t u d i e s  by Delany and Ehzley (ref.  28) 
and Chessell (ref.  391, the r ecen t  study by Donato (ref. 40) con ta ins  t h e o r e t i -  
cal r e s u l t s  comparable t o  the measured data. The development o f  t h e o r e t i c a l  
models o f  ground impedance is important s i n c e  it may lead t o  a l t e r n a t e  methods 
of ground-impedance measurement. 

STANDARD PRACTICE I N  CORRECTING FOR GROUND EFFECTS 

Most c u r r e n t  s t anda rd  methods f o r  the  c o r r e c t i o n  and p r e d i c t i o n  o f  ground 
effects are empi r i ca l .  I n  the  area o f  long-distance propagation, simple 
methods o f  p r e d i c t i o n  are commonly used. (See ref.  1 . )  Sound a t t e n u a t i o n  is 
given as a func t ion  o f  e l e v a t i o n  a n g l e  i n  these methods. However, some confu- 
s i o n  e x i s t s  regarding the range of e l e v a t i o n  ang le  wi th in  which ground effects  
are impor tan t .  According t o  r ecen t  t h e o r e t i c a l  r e s u l t s ,  the observed phenomena 
can be described a n a l y t i c a l l y  i n  a straightforward manner. The dependence o f  
ground effects on e l e v a t i o n  ang le  and ground impedance can be computed by us ing  
equat ions  i n  the recommended p r e d i c t i o n  method and i n  the  appendix. 
a t t e n t i o n  is given t o  methods o f  data c o r r e c t i o n  f o r  ground-based engine-noise 
and flyover-noise measurementi. I n  t h i s  s e c t i o n ,  common practices i n  t h e  lat-  
ter ca tegory  are d iscussed .  

Much 

The o b j e c t i v e  o f  data c o r r e c t i o n  is t o  recover  t h e  free-field spectrum 
from measurements w i t h  ground effects.  The two p o s s i b l e  approaches are ei ther  
t o  minimize the  a c o u s t i c  problems a s s o c i a t e d  wi th  r e f l e c t i o n  or t o  c o r r e c t  f o r  
the  ground effects dur ing  data process ing .  

Modification o f  Phys ica l  Environment 

Flush-mounted microphone-s.- The first d i p  caused by mul t ipa th  i n t e r f e r e n c e  
over a r i g i d  s u r f a c e  occurs  a t  a frequency g iven  by 

where '1 is the  source-to-microphone d i s t a n c e ,  c is the  speed o f  sound, 
and h and z are the  h e i g h t s  of source  and r e c e i v e r ,  r e s p e c t i v e l y .  By reduc- 
i n g  the  microphone he ight ,  f o  can be made as high as necessary.  For a d i s -  
t ance  o f  60 m, f o r  example, and a sound source  2 m above the  ground, 
be above 10 kHz f o r  microphone heights below 25 c m .  S ince  the  d i rec t  and the 
reflected waves w i l l  a r r i v e  a t  the  microphone approximately i n  phase, the  sound 
p res su re  is double t he  free-field cond i t ion .  
tracted from a l l  frequency bands f o r  free-field equivalence.  

fo w i l l  

Therefore, 6 dB should be sub- 
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Flush-mounted microphones are now being ex tens ive ly  used f o r  outdoor 
a c o u s t i c  measurements, e s p e c i a l l y  f o r  engine s ta t ic  tests. Owing t o  t he  
effects of ground and wind and temperature g r a d i e n t s  near  the ground, precau- 
t i o n s  should be taken t o  guard a g a i n s t  high-frequency l o s s e s  i n  t h i s  conf igura-  
t i o n .  Data above 1 kHz should be compared with equ iva len t  bands as measured on 
a microphone a t  least  1 m above the  s u r f a c e .  It is common p r a c t i c e  t o  combine 
the low-frequency data from flush-mounted microphones with high-frequency data 
from t h e  raised microphones, thereby reducing t h e  flush-mounted-microphone d a t a  
by 6 dB and the  raised-microphone data by about 2 dB t o  o b t a i n  a composite 
f r e e - f i e l d  sound p res su re  l e v e l  spectrum. 

The flush-mounted microphone should be used only over hard s u r f a c e s  s i n c e  
the  phase s h i f t  f o r  r e f l e c t i o n  from a porous s u r f a c e  can in t roduce  s e r i o u s  fre- 
quency d i s t o r t i o n  i n  the spectrum. For a i rcraf t  f lyove r  measurements , good 
r e s u l t s  have been obta ined  by facing a sheet o f  plywood approximately 1.25 m 
by 1.25 m i n  dimension with aluminum and mounting t h e  microphone i n  a ho le  
d r i l l e d  i n  t h e  c e n t e r .  Furthermore, flush-mounted microphones should n o t  be 
used f o r  s i d e l i n e  no i se  measurements s i n c e  ground effects,  such as the  s u r f a c e  
wave, can in t roduce  e r r o r s  i n  t h e  low-frequency data. 

Raised microphones.- It is p r a c t i c a l  a l s o  t o  a r r ange  microphones high 
above t h e  ground s u r f a c e  so t h a t  the first i n t e r f e r e n c e  d i p  fa l l s  below t h e  
frequency range o f  common i n t e r e s t .  For example, a sepa ra t ion  d i s t ance  of 20 m 
combined w i t h  source  and microphone he ights  a t  6 m w i l l  b r ing  the  first i n t e r -  
fe rence  d i p  i n  the  spectrum t o  about 50 Hz. Presumably the one-third-octave 
band a t  50 H z  is not  considered s i g n i f i c a n t ,  and t h e  higher  order  i n t e r f e r e n c e  
p a t t e r n s  are narrow compared w i t h  t he  one-third-octave bandwidth and are t h u s  
less i n f l u e n t i a l  on the  measured data. This  method is  s u s c e p t i b l e  t o  e r r o r s  
caused by environmental f a c t o r s  and appears t o  be less a c c u r a t e  than t h e  f lu sh -  
mounted-microphone concept.  

Gravel and similar p a r t l y  con t ro l l ed  impedance s u r f a c e s  .- Many aerospace 
o rgan iza t ions  use  g r a v e l  or sand areas f o r  s t a t i c  a c o u s t i c  measurements t o  
avoid the  cos t  o f  l a r g e  concre te  pads .  This p r a c t i c e  g i v e s  reasonable r epea t -  
a b i l i t y  of measurements f o r  microphones which are a t  least a meter from t h e  
su r face .  The a c o u s t i c  impedance of g r a v e l  test areas has been found t o  be 
r e l a t i v e l y  cons tan t  provided tha t  they have s u f f i c i e n t  t h i ckness ,  are w e l l  
d r a ined ,  and remain above the water table .  Since the  engine s t a t i c  test facil- 
i t i e s  have a high rate o f  u t i l i z a t i o n ,  t h e  g r a v e l - f i l l e d  area is sometimes 
a c o u s t i c a l l y  calibrated f o r  ground effects .  The effects o f  t h e  wind vec to r  are 
o f t e n  included i n  t h e  c a l i b r a t i o n .  

Numerical Ground-Effects Correction 

Data c o r r e c t i o n  wi th  known ground impedance.- If rel iable  data o f  ground 
impedance are known, ground effects i n  measured data can be co r rec t ed  by means 
o f  a n a l y t i c a l  c a l c u l a t i o n s .  F igure  5 shows a comparison between a one-third- 
oc tave  band spectrum o f  a j e t  engine on s ta t ic  test as recorded over a g r a v e l  
s u r f a c e  w i t h  a microphone 75 m away and as recorded from a ba l loon  t h e  same 
d i s t a n c e  above the  source.  The first microphone and t h e  sound source were 4 m 
above the  g r a v e l  s u r f a c e .  The presumed ground r e f l e c t i o n  characteristic is  
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determined by the d i f f e rence  between the two s p e c t r a l  curves  and is shown i n  
t h e  lower h a l f  o f  f i g u r e  5 as  a s o l i d - l i n e  curve.  The p o i n t s  are the  ca lcu-  
lated va lues  o f  t h e  ground r e f l e c t i o n  characterist ics us ing  an impedance va lue  
taken from Dickinson's measurement f o r  a broken tarmacadam s u r f a c e .  Even wi th  
the  rough impedance estimate, there is a very  good agreement w i t h  t h e  measured 
data. Other d i s c u s s i o n s  o f  data c o r r e c t i o n  w i t h  known a c o u s t i c  p r o p e r t i e s  o f  
t h e  ground are given i n  r e fe rences  41 and 42. 

Miscellaneous techniques.-  Data which show prominent d i p s  i n  lower fre- 
quency bands are f r e q u e n t l y  co r rec t ed  by t h e  t r a i n e d  eye and hand of t h e  test 
engineer .  T h i s  c o r r e c t i o n  can be f a i r l y  s u c c e s s f u l  f o r  data obtained over hard 
s u r f a c e s  i f  the test engineer understands the t h e o r e t i c a l  background and i f  t h e  
expected free-field spectrum is guided by, f o r  example, model test  data obta ined  
i n  an anechoic chamber. I n  common p r a c t i c e  the  peak i n  the  lowest f r equenc ie s  
w i l l  be lowered by 3 t o  4 dB, a smooth l i n e  w i l l  be drawn through the  first d i p ,  
and t h e  high-frequency bands w i l l  be lowered 1 or 2 dB w i t h  peaks and t roughs  
smoothed ou t .  T h i s  procedure w i l l  obviously be i n c o r r e c t  i n  cases where a 
s t rong  tone  is  p r e s e n t .  Therefore,  the test engineer  should a l s o  be familiar 
w i t h  the  characteristics o f  t h e  sound source  so  as t o  d i s t i n g u i s h  which fre- 
quency bands l e g i t i m a t e l y  should conta in  i n t e r f e r e n c e  c o r r e c t i o n s  and which 
ones may inc lude  real tones .  He is a l s o  r e spons ib l e  f o r  recognizing erratic 
behavior o f  the data, such as e l e c t r o n i c  no i se  sources .  

Computer a lgo r i thms  performing t h e  same sequence o f  ope ra t ion  have 
appeared i n  r e c e n t  years .  This  procedure has been used by research organiza- 
t i o n s  where high-volume data process ing  is  requ i r ed .  The computer-based method 
can u t i l i z e  the  t h e o r e t i c a l  r e s u l t s  f o r  ground effects i n  a more p o s i t i v e  man- 
ner  than t h e  manual method. 

Note a l s o  t h a t  c o r r e c t i o n  by v i s u a l  smoothing can lead t o  s e r i o u s  e r r o r  
f o r  data taken a t  long  d i s t a n c e s  over a s u r f a c e  w i t h  f i n i t e  impedance. The 
high-frequency a c o u s t i c  s i g n a l  can be s y s t e m a t i c a l l y  reduced through the  a c t i o n  
of ground effects. 
inc rease  from the  measured l e v e l  i n s t ead  of the  more common s u b t r a c t i o n  o f  1 
or 2 dB. 

Consequently t h e  ground-effects c o r r e c t i o n  may r e q u i r e  an 

Analy t ic  c o r r e c t i o n  methods.- A number o f  computer-based methods f o r  t h e  
c o r r e c t i o n  o f  ground effects e x i s t .  Each method is  designed f o r  use a t  a spe- 
c i f i c  f a c i l i t y .  However, these methods are d e f i n i t e l y  a p p l i c a b l e  a t  o t h e r  
f ac i l i t i e s  of similar type .  The method given by Miles (refs. 43 and 44) is 
designed f o r  an asphal t - sur faced  a c o u s t i c  test area where t h e  t y p i c a l  d i s t a n c e  
of measurement is 20 m and t h e  source and microphone h e i g h t s  are approximately 
4 m above the  ground. This  method is an i t e r a t i v e  scheme where a model free- 
f i e l d  spectrum is p o s t u l a t e d  a t  t h e  beginning o f  t h e  i t e r a t i o n .  Ground effects 
are added t o  t h i s  spectrum and the r e s u l t  is compared with t h e  measured data. 
A s p e c i a l  e r r o r  func t ion  is chosen t o  measure t h e  agreement. If t h e  e r r o r  
limit is exceeded, t h e  parameters for the model spectrum and the  ground effects 
are modified and a second i t e r a t i o n  w i l l  be completed. Owing t o  t h e  r e l a t i v e l y  
s h o r t  d i s t a n c e  o f  measurement, a multiple-source l o c a t i o n  problem is o f t e n  
encountered f o r  large t e s t  o b j e c t s  a t  t h i s  f a c i l i t y .  Th i s  method has been 
found t o  provide s a t i s f a c t o r y  r e s u l t s  f o r  ground-effects c o r r e c t i o n  under such 
condi t ions .  
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Another approach is o f t e n  adopted f o r  ground-ef fec ts  c o r r e c t i o n  i n  g rave l -  
f i l l e d  tes t  areas with t y p i c a l  source-to-microphone d i s t a n c e s  of 40 m t o  60 m. 
The f a c i l i t y  is c a l i b r a t e d  a c o u s t i c a l l y  t o  determine some t y p i c a l  parameters 
o f  ground impedance and expected ground effects on a c o u s t i c  measurements. The 
computer program i n i t i a t e s  a search f o r  the frequency and magnitude o f  the  
first i n t e r f e r e n c e  d i p  and then a p p l i e s  t h e  a p p r o p r i a t e  ground-ef fec ts  cor rec-  
t i o n  f o r  the e n t i r e  sound p res su re  l e v e l  spectrum according t o  the  information 
obtained i n  t h e  a c o u s t i c  c a l i b r a t i o n  o f  the  f a c i l i t y .  
found t o  be success fu l .  

These methods are a l s o  

Ceps t ra l  technique.- Another u s e f u l  technique f o r  ground-ef fec ts  cor rec-  
t i o n  was developed by Miles e t  a l .  (ref.  45).  For a c o u s t i c  measurements a t  
s h o r t  range wi th  the  sound source  and the  microphone h igh  above a hard s u r f a c e ,  
the  maximums and minimums o f  the  i n t e r f e r e n c e  p a t t e r n  occur a t  r egu la r  frequency 
i n t e r v a l s .  Furthermore, the  first i n t e r f e r e n c e  d i p  o f t e n  occurs  a t  a very low 
frequency which l ies  below the  range o f  p r a c t i c a l  i n t e r e s t  so t h a t  it may be 
ignored. A Four ie r  t ransformat ion  o f  the logar i thm o f  t he  spectrum r e s u l t s  i n  
a c e p s t r a l  func t ion  i n  which i n t e r f e r e n c e  maximums and minimums are represented  
as a s i n g l e  sp ike .  The l o c a t i o n  o f  t h i s  sp ike  is  determined by t h e  frequency 
span between two consecut ive  maximums or minimums. By removing t h i s  s p i k e  from 
the  cepstral  func t ion  and t ak ing  an inve r se  Four i e r  t ransformat ion ,  the  r e s u l t  
is a logar i thm spectrum without ground e f f e c t s .  Note t h a t  t h i s  technique is 
app l i cab le  only f o r  a c o u s t i c  measurements over a hard s u r f a c e  where the  su r face  
r e f l e c t i o n  does not  in t roduce  any s i g n i f i c a n t  phase s h i f t  i n t o  t h e  a c o u s t i c  
s i g n a l .  

The importance o f  ground effects has been recognized, and e f f e c t i v e  mea- 
s u r e s  have been taken i n  major tes t  f a c i l i t i e s  f o r  t he  improvement o f  phys i ca l  
environments f o r  outdoor a c o u s t i c  measurements. I n  the area of data a n a l y s i s ,  
the  methods now i n  e x i s t e n c e  show a t rend  o f  continued improvement. I n  p a r t i c -  
u l a r ,  success fu l  computer a lgor i thms o f  ground-ef fec ts  c o r r e c t i o n  are now a v a i l -  
able f o r  s p e c i f i c  cond i t ions  o f  t es t  environment. The next  l o g i c a l  s t e p  is  t o  
implement f u l l y  the  advanced t h e o r e t i c a l  r e s u l t s  i n  a computerized scheme. 

RECOMMENDED PREDICTION METHOD 

S p e c i f i c  formulas,  obtained from recent theo ry ,  are suggested h e r e i n  f o r  
t he  purpose of making p r e d i c t i o n s  o f  t h e  a c o u s t i c  f i e l d  i n  real  experimental  
s i t u a t i o n s .  These formulas are, as previous ly  mentioned, based on the  approxi- 
mate r e s u l t s  o f  Chien and Soroka (ref.  11)  and supplemented by the exact i n t e -  
gral  s o l u t i o n  o f  Thomasson (ref.  12) .  The p h y s i c a l  model o f  sound propagation 
over ground which forms the  basis o f  these t h e o r i e s  has been d iscussed  i n  t h e  
"1ntroduction.I' The e s s e n t i a l  f e a t u r e s  o f  t h i s  model are t h e  assumptions o f  a 
flat., l o c a l l y  r e a c t i n g  ground s u r f a c e  and a uniform atmosphere, and t o  t h e  
e x t e n t  t h a t  these assumptions are j u s t i f i e d  f o r  the  p a r t i c u l a r  experiment i n  
ques t ion ,  t h e  formulas can be expected t o  y i e l d  a c c u r a t e  p r e d i c t i o n s .  Note 
t h a t  these formulas were der ived  f o r  the  case o f  time-harmonic waves radiated 
by a p o i n t  source and hence can be app l i ed  d i r e c t l y  only t o  t h i s  case. How- 
ever  s ince  these formulas r ep resen t  Green's func t ion  s o l u t i o n s ,  they can be 
used t o  treat  more g e n e r a l  s i t u a t i o n s  by means o f  supe rpos i t i on .  For example, 
the s o l u t i o n  f o r  t he  case o f  a d i s t r i b u t e d  source  can be  obtained by i n t e g r a t i n g  
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the point-source s o l u t i o n ,  weighted by the  a p p r o p r i a t e  source  term, over the  
source  volume. A similar approach can be used t o  treat  the  case i n  which t h e  
source has a cont inuous  frequency spectrum. 

The geometry of the  s i t u a t i o n  is shown i n  f i g u r e  1. A p o i n t  time-harmonic 
source S is loca ted  a t  a height  h above an impedance boundary which is 
taken t o  be co inc iden t  w i t h  the  x ,y  plane.  The d i s t a n c e s  from S and S f  
( the  image source)  t o  the  r e c e i v e r  R are denoted by rl and '2, respec- 
t i v e l y ;  r is the  h o r i z o n t a l  d i s t a n c e  between S and R ;  and 8 is t h e  a n g l e  
of inc idence .  

I n  mathematical terms, the  problem o f  i n t e r e s t  i nvo lves  t h e  s o l u t i o n  o f  
the  equation 

(v2 + k2)$ = ~ ( x ) ~ ( Y ) & ( z  - h)  ( 1 )  

i n  the region z > 0 o f  x , y , z  space s u b j e c t  t o  the boundary condi t ion  

on z = 0.  Here $ is the  (complex) a c o u s t i c  v e l o c i t y  p o t e n t i a l  and k = w/c ,  
where w is the  c i r c u l a r  frequency (assumed p o s i t i v e )  and c is the  speed o f  
sound. Also V is the  s p e c i f i c  boundary admi t tance ,  which i s  assumed con- 
s t a n t ,  and is w r i t t e n  i n  t h e  form V = VI + iV2 where V I  2 0. I n  a d d i t i o n  
t o  t h e  boundary cond i t ion  g iven  by equat ion  (21, a r a d i a t i o n  cond i t ion  co r re -  
sponding t o  outgoing waves is understood t o  be imposed a t  i n f i n i t y  but  is not  
e x p l i c i t l y  i n d i c a t e d  here. A time-harmonic f a c t o r  e-iwt, common t o  both the  
source and the wave f i e l d ,  is a l s o  understood. The complex a c o u s t i c  p re s su re  
amplitude p is  g iven  i n  terms of t h e  v e l o c i t y  p o t e n t i a l  by t h e  r e l a t i o n  
p = - iwPo$,  where Po is t h e  unperturbed d e n s i t y  o f  t h e  a c o u s t i c  medium. 

A s  noted p rev ious ly ,  t h e  va r ious  approximate s o l u t i o n s  obtained by Chien 
and Soroka cover a wide range of pract ical  s i t u a t i o n s ,  provided only t h a t  
k r 2  >> 1. Within t h i s  rather m i l d  c o n s t r a i n t ,  s e v e r a l  subcases appear natu- 
r a l l y  and are def ined  below a long  w i t h  the  corresponding approximate s o l u t i o n s  
( w r i t t e n  i n  the  p r e s e n t  n o t a t i o n ) ,  which are recommended he re in  f o r  p r e d i c t i o n  
purposes. 

(1 )  I v l  << 1. I n  t h i s  case, the  a p p r o p r i a t e  express ion  f o r  t h e  wave f i e l d  

i k r  1 

is obtained from equat ion  (25) of re ference  11 ,  and can be w r i t t e n  i n  t h e  form 

i k r 2  

r 2  
+ [r + ( I  - r )  ~(013% (3 )  1 0 = - G{+ 1 

where r is  the  p lane  wave r e f l e c t i o n  c o e f f i c i e n t ,  def ined  by 

cos  e - v 
c o s  e + v 

r =  (4 )  
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The funct ion F is given by 

F(u) = 1 - n1/Geu2 erfc(0) 

where u is defined by 

(5 )  

I n  equat ion ( 6 )  t h e  p r i n c i p a l  branch of  t he  square r o o t  is understood; t h a t  is, 
t h e  square roo t  of  any complex number 5 is defined by 

-71 IT 

2 2 
where -IT < arg 5 5 IT. S ince - < a r g  V 5 -, t h e  argument of 0 l i es  i n  t h e  

-3n IT 

4 4 
range - _I arg u 5 -. The so lu t ion  given by equat ions  (3) t o  ( 6 )  has  essen- 

t i a l l y  t h e  same form as those  of  Ingard (ref.  8 ,  eq. (13))  and Lawhead and 
Rudnick (ref.  9 ,  eq.  ( 2 1 ) ) .  These au tho r s  d id  n o t ,  however, make clear t h e  
r e s t r i c t i o n s  on the  v a l i d i t y  of  t h e i r  so lu t ions .  

The power-series expansion 

of t he  complementary e r r o r  func t ion  when i n s e r t e d  i n t o  equat ion (5 )  y i e l d s  t h e  
expansion 

which is convenient f o r  c a l c u l a t i o n s  when 101 << 1 .  Recall t h a t  

(2n + l)!!  E 1 - 3 - 5 ... - (2n + 1 )  
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S i m i l a r l y ,  t he  asymptot ic  expansion 

leads t o  the  r e s u l t  

which is u s e f u l  when la1 >> 1 .  Here U denotes  t h e  u n i t  s t e p  func t ion ,  which 
is  defined by 

( s  > 0 )  

1 

2 
U(s) = - i 0 

The surface-wave term is e a s i l y  v e r i f i e d  t o  be i m p l i c i t  i n  t he  approximations 
given by equat ions  (8) and (10)  by simply t r u n c a t i n g  both expansions after two 
terms and i n s e r t i n g  the  r e s u l t  i n t o  equat ion  ( 3 ) .  

which 8 = - ( i . e . ,  both source and r ece ive r  on t h e  boundary), t h i s  procedure 

y i e l d s  

For t h e  s p e c i a l  case i n  
TI 

2 

when I a1 << 1 ,  and 

i e i k r  

2m2kr2 

1 /2 i[( 1 -if) k r - 4  
9.1- + U ( - R e  O)V(&) e (12)  

when 101 >> 1 .  
and (12) can be i d e n t i f i e d  as surface-wave terms. Note t h a t  t h e  surface-wave 
term i n  equat ion  (12)  appears  only when Re CJ 5 0 ,  or what is equ iva len t ,  when 

- - 5 arg v 5 - 

The second terms on the  right-hand s i d e s  of equat ions  ( 1  1 ) 

TI 71 

2 4‘ 
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Note t h a t ,  a l though the  o r i g i n a l  de r iva t ion  o f  equat ion (25)  o f  Chien and 
Soroka (ref. 111,  o r ,  equ iva len t ly ,  equat ion ( 3 )  of  t h e  present  paper,  requi red  
t h e  a d d i t i o n a l  assumptions t h a t  k r  >> 1 and k (h  + z I 2 / r  << 1 ,  Chien and 
Soroka (ref. 11, sec. 6 )  showed t h a t  t hese  a d d i t i o n a l  condi t ions  can be 
relaxed.  

( 2 )  I v l  2 1 ( i .e . ,  is  of order  1 or g r e a t e r ) .  I n  t h i s  case t h e  
appropr ia te  expression f o r  9 is given by equat ion (12)  of r e fe rence  11, 
which, after some manipulat ion,  can be w r i t t e n  

( $ = a  (v2 L - fwl  ,e I (13a) 

c $ l = @ + Y  (v2 < -f(q ,011 (13b) 

where 

2 iv  1 + v cos  8 

kr2  (COS e + ~ ) 3  
(14)  

and 

Here 1 is  t h e  surface-wave term, and H i ’ )  denotes  t h e  Hankel func t ion .  The 
func t ion  f ( v 1 , e )  for selected va lues  o f  8 is p l o t t e d  i n  f i g u r e  6 .  The 
surface-wave term i n  equat ion (13b) t u r n s  ou t  t o  be n e g l i g i b l e  a t  a l l  except  
near-grazing ang le s  of  inc idence .  To see t h i s ,  no te  t h a t ,  from f i g u r e  1 ,  
h + z = r 2  cos 6; a l s o ,  as a consequence of t h e  condi t ion  on V f o r  t he  ex is -  
tence  of  the  su r face  wave and the  assumption t h a t  kr2  >> 1 ,  no te  t h a t  -V2 - 1 
whenever t h e  s u r f a c e  wave e x i s t s .  Hence 

> 

1 e-ivk(h+z) 1 <, e-kr2cOSe 

which, since k r 2  >> 1 ,  is n e g l i g i b l e  whenever cos  8 :: 1 .  Note a l s o  t h a t  t h e  
condi t ion  lv l  2 1 of  t h i s  subsec t ion  can be re laxed  a t  a l l  except  near- 

graz ing  angles  o f  incidence.  This  fo l lows  from t h e  fact t h a t  t h e  a c t u a l  condi- 
t i o n  f o r  t h e  v a l i d i t y  o f  equat ion (12) of‘ r e fe rence  11 is  I cos  8 + VI2kr2 >> 1. 
Therefore ,  provided tha t  k r 2  >> 1 ,  t h e  assumption 2 1 is needed only  when 
cos e << 1. 

Up t o  t h i s  p o i n t ,  t h e  r e s u l t s  of  t h i s  s e c t i o n  r e q u i r e  f o r  t h e i r  v a l i d i t y  
t h a t  k r2  >> 1. I n  o rde r  t o  treat the  case i n  which k r2  <, 1 ,  it is necessary  
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t o  r e s o r t  t o  numerical  eva lua t ion  of the  exac t  i n t e g r a l  express ion  f o r  t he  wave 
f i e l d .  For t h i s  purpose, the i n t e g r a l  express ion  of Thomasson ( re f .  12, sec. V) 
appears  t o  be  most s u i t a b l e .  This  s o l u t i o n  can a l s o  be used as a check on the  
approximate r e s u l t s  g iven  p rev ious ly  i n  t h i s  s e c t i o n .  

I n  the  p resen t  n o t a t i o n ,  Thomasson's s o l u t i o n  can be w r i t t e n  

+ H  

where 

H =  F 

H =  F + G  

Here f ( V l , e )  is given by equation (16)  and 

where 

(17) 

and 

I n  c a l c u l a t i n g  t h e  square r o o t  of D ,  t h e  p r i n c i p a l  branch, as defined previ -  
ous ly ,  is  t o  be used except  when v2 < -f(V1,0) and t > t l ,  where 

t l  = -v2(cos e + V l ) ( l  + v1 cos 01-1 

i n  which case the negat ive  of the p r i n c i p a l  va lue  is t o  be used. The q u a n t i t y  
G i n  equat ion  (18b) is t h e  surface-wave term; t h a t  is ,  

Note t h a t  the  surface-wave term and t h e  cond i t ion  f o r  i t s  ex i s t ence  are t h e  
same as given by equat ions  (13b) and (15) .  
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PROBLEMS I N  APPLICATION 

The preceding t h e o r e t i c a l  development is  based on a set o f  i d e a l i z e d  con- 
Some common prob- d i t i o n s  which are no t  always met i n  p r a c t i c a l  a p p l i c a t i o n s .  

lems i n  t h i s  d i r e c t i o n  are now discussed .  

F i n i t e  Source 

The effects of f in i t e - source  dimension have been analyzed i n  de t a i l  by 
Thomas (ref. 46).  I n  a f ixed  geometr ica l  conf igu ra t ion  where both t h e  source  
and t h e  microphone p o s i t i o n s  are h igh  above t h e  ground s u r f a c e ,  ground effects  
on sound propagation are a r e s u l t  o f  phase d i f f e r e n c e s  between t h e  d i r e c t  and 
t h e  reflected waves caused by ground r e f l e c t i o n  and pa th  l eng th  d i f f e r e n c e s .  
The maximum d e s t r u c t i v e  i n t e r f e r e n c e  occurs a t  a s p e c i f i c  frequency where t h e  
t o t a l  phase mismatch is 1800. However, such frequency is  sha rp ly  def ined  on ly  
i f  the  sound is emitted from a po in t  source.  I n  p r a c t i c e ,  a s i n g l e  j e t  engine 
may have a diameter greater than  2.5 m. 

Consider an engine no i se  test a t  s ta t ic  condi t ion .  The c e n t e r  l i n e  o f  t h e  
engine and t h e  microphone are both pos i t ioned  a t  5.5 m above t h e  ground w i t h  a 
h o r i z o n t a l  s epa ra t ion  d i s t a n c e  o f  60 m. Furthermore, assume t h a t  the ground 
su r face  is paved w i t h  concre te .  I n  t h i s  conf igu ra t ion ,  t h e  pa th  d i f f e r e n c e  
computed from the  c e n t e r  of the engine t o  t h e  p o s i t i o n  o f  t h e  microphone is 
approximately 1 m ,  and the  corresponding frequency f o r  maximum c a n c e l l a t i o n  is 
approximately 174 Hz. If the source p o s i t i o n s  a long  the  l i p  l i n e  a t  t h e  engine 
i n t a k e  are cons idered ,  the  maximum c a n c e l l a t i o n  frequency ranges from 141 Hz 
f o r  p o i n t s  farthest  from t h e  ground t o  224 Hz f o r  p o i n t s  n e a r e s t  t o  t h e  ground. 
Hence, t h e  a c o u s t i c  energy emit ted near  t h e  l i p  l i n e  w i l l  have a range o f  can- 
c e l l a t i o n  f requencies  extending over a t  least e i g h t - t e n t h s  o f  an oc tave .  The 
measured a c o u s t i c  spectrum w i l l  show a broad but shallow d i p  i n  t h i s  frequency 
range, r a t h e r  than a sha rp  minimum. 

F i l t e r  Bandwidth 

The modi f ica t ion  o f  t he  i n t e r f e r e n c e  p a t t e r n  by f i n i t e  f i l t e r  bandwidths 
has been analyzed by Howes (ref. 47) and d iscussed  i n  r e fe rence  1 .  The g e n e r a l  
effect  o f  the one-third-octave f i l t e r s  commonly used is t o  average ou t  peaks 
and d i p s  wi th in  bands above 1000 Hz and t o  broaden t h e  lower ones similar t o  
t h e  effect  o f  extended source dimension. The f i l t e r s  do not  reduce much o f  t h e  
depth o f  t h e  first i n t e r f e r e n c e  d i p  s i n c e  t h e  width o f  t h i s  d i p  is  larger than  
t h e  f i l t e r  bandwidth. 

Observe t h a t  t h e  f i l t e r i n g  procedure may change t h e  measurements but h a s  
no effect on t h e  phys ica l  phenomenon. Thus i f  t h e r e  is a prominent tone  a t  a 
s i n g l e  frequency i n  a h igh  one-third-octave band, it may be increased  or can- 
ce led  by mul t ipa th  i n t e r f e r e n c e .  The average ground-effects c o r r e c t i o n  f o r  t h e  
e n t i r e  band would no t  be a p p l i c a b l e  f o r  recover ing  t h e  c o r r e c t  va lue  o f  t h i s  
tone.  
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Partial Coherence 

For no i se  emission wi th  a broadband spectrum, such as j e t  no i se ,  t h e  
o r i g i n  o f  no i se  is o f t e n  random i n  na tu re .  The idea o f  phase c a n c e l l a t i o n  
should be  treated w i t h  special care. The ampl i tude  of t h e  combined direct  and 
reflected waves depends on the  maintenance o f  coherent  phase r e l a t i o n s  between 
wave components a r r i v i n g  a t  t he  p o i n t  o f  measurement by d i f f e r e n t  pa ths .  
phase r e l a t i o n  can a l s o  be l o s t  through the effect o f  random p e r t u r b a t i o n s  
a long  the  pa th  o f  propagat ion  or as a r e s u l t  o f  r e f l e c t i o n  on a nonhomogeneous 
ground s u r f a c e .  The effect  o f  coherence on sound p res su re  l e v e l  can be shown 
i n  a simple a n a l y s i s .  A coherence c o e f f i c i e n t  can be def ined  as 

The 

where So(w) and S r ( W )  are the  sound power spectral  d e n s i t y  o f  the  d i rec t  
and the reflected s i g n a l s ,  r e s p e c t i v e l y ,  and Q(w> is the  magnitude o f  the  
c r o s s - s p e c t r a l  d e n s i t y  func t ion  between t h e  direct  and the  reflected waves. 
(Note t h a t  t h i s  func t ion  is no t  always measurable i n  the  conf igu ra t ion  o f  
ground r e f l e c t i o n .  It is w e l l  de f ined ,  however, when both the  d i rec t  and 
reflected a c o u s t i c  s i g n a l s  are known. 1 The coherence c o e f f i c i e n t  C ( w )  can 
be considered as the  f r a c t i o n  o f  i n i t i a l  a c o u s t i c  energy i n  which phase rela- 
t i o n  is maintained throughout the  propagation p rocess .  The balance o f  t h e  
a c o u s t i c  energy is d i s t r i b u t e d  i n  waves o f  the  same frequency w i t h  random phase 
r e l a t i o n s .  

A t  the p o i n t  o f  recombination o f  t he  direct-  and reflected-wave compo- 
nen t s ,  t he  coherent p o r t i o n  o f  the  wave w i l l  be summed according t o  t he  ampl i -  
tude  and phase o f  the  two components, whereas the  incoherent  po r t ion  o f  the  
wave energy w i l l  be summed according t o  t h e  va lues  o f  t h e  a c o u s t i c  i n t e n s i t y .  
This  leads t o  the equat ion  

(23) 
PL 

PO2 
- = C(w)[l  + 2 R  COS (a  + kd)  + R 2 1  + [l - C ( w ) ] ( l  + R2> - 

where p r e p r e s e n t s  the combined sound p res su re ,  po is the  expected free- 
f i e l d  sound p r e s s u r e  a t  t h e  microphone p o s i t i o n ,  d is  t h e  l eng th  d i f f e r e n c e  
between the  reflected pa th  and the direct  pa th ,  and R and a are the ampli- 
tude  and phase of t he  r e f l e c t i o n  c o e f f i c i e n t ,  t h a t  is, 

r(w) = R ( w ) e i c l ( w )  (24)  

where r ( W )  is defined i n  equat ion  ( 4 ) .  The va lues  o f  R and c1 are fre- 
quency dependent. S ince  the  coherence c o e f f i c i e n t  is no t  always a measurable 
func t ion ,  some assumptions may be necessary  f o r  practical  a p p l i c a t i o n s .  A 
reasonable choice  is a Gaussian d i s t r i b u t i o n  

c ( w >  .-(awl2 (25) 

where a is a real and p o s i t i v e  cons t an t .  
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A t  the  frequency o f  maximum des t ruc tuve  i n t e r f e r e n c e ,  t h e  direct- and 
reflected-wave components are 1800 ou t  of phase a t  recombination. Equa- 
t i o n  (23)  can be s i m p l i f i e d  t o  g ive  the r e l a t i v e  sound p res su re  l e v e l  i n  ref- 
erence t o  the  expected free-field sound p res su re  l e v e l  (SPL) a t  the microphone 
p o s i t i o n  

Calculated va lues  o f  t h i s  i n t e r f e r e n c e  d i p  f o r  d i f f e r e n t  va lues  o f  
R are given i n  f i g u r e  7.  Note t h a t  t he  presence of a small f r a c t i o n  of inco- 
he ren t  wave can make drastic changes i n  the  va lue  o f  t he  i n t e r f e r e n c e  a t t enua -  
t i o n .  For example, wi th  a r e f l e c t i o n  c o e f f i c i e n t  o f  0.90, t h e  magnitude of the 
i n t e r f e r e n c e  d i p  reduces from 20 dB f o r  a wave w i t h  perfect coherence t o  merely 
7.9 dB f o r  a wave wi th  a coherence c o e f f i c i e n t  o f  0.95. 

.C(W) and 

I n  the  case o f  j e t  no i se ,  sound emit ted i n  d i f f e r e n t  d i r e c t i o n s  w i l l  n o t  
be p e r f e c t l y  coherent .  According t o  experimental  i n d i c a t i o n s ,  t h e  coherence 
f a c t o r  ( re f .  48, f igs .  20 and 21) is 

where 6 is  the ang le  between the  direct  and the reflected ray  pa ths  a t  t h e  
source.  For an emission angle d i f f e rence  o f  loo ,  which is common f o r  t y p i c a l  
engine s t a t i c  tes t  c o n f i g u r a t i o n s ,  the  coherence f a c t o r  is approximately 0.94. 
Furthermore, je t  no i se  is coherent only over a f i n i t e  l e n g t h  o f  time. The 
t y p i c a l  coherence t i m e  scale f o r  a large j e t  engine is o f  t h e  o rde r  o f  10 t o  
15 msec. For a propagation pa th  d i f f e r e n c e  o f  more than a few meters, t h e  time 
incoherence of the  a c o u s t i c  s i g n a l  must be taken i n t o  cons ide ra t ion .  Such con- 
d i t i o n s  may be encountered f o r  f lyove r  measurements w i t h  microphones pos i t ioned  
h igh  above t h e  ground. 

may 
of 

Under cond i t ions  o f  long-range propagation, s e v e r a l  a d d i t i o n a l  mechanisms 
become s i g n i f i c a n t  i n  l o s s  o f  s i g n a l  coherence. Among t h e  most important 

these are the effects o f  atmospheric turbulence and the effects  o f  random 
ground roughness. An a n a l y s i s  o f  t h e  former has  been given by Ingard and 
Maling ( re f .  4 9 ) ;  however, t h a t  a n a l y s i s  considered only s i n g l e  s c a t t e r i n g  and 
hence is v a l i d  only  f o r  r e l a t i v e l y  l i m i t e d  propagat ion  d i s t a n c e s .  With regard 
t o  the l a t te r ,  mathematical techniques which inc lude  m u l t i p l e - s c a t t e r i n g  effects, 
and which are t h e r e f o r e  a p p l i c a b l e  t o  long-range propagat ion ,  kave only  r e c e n t l y  
been developed. (See,  e.g., .refs. 50 t o  52.)  No a t tempt  has y e t  been made t o  
apply these techniques  t o  real problems involv ing  propagation o f  sound over 
ground. It t h u s  appears  t h a t  p r e d i c t i o n s  o f  coherence l o s s  due t o  these mech- 
anisms must remain, a t  least f o r  now, l a r g e l y  empi r i ca l .  

An a d d i t i o n a l  effect o f  atmospheric tu rbulence ,  which is no t  related t o  
the presence of a nearby r e f l e c t i n g  s u r f a c e ,  is manifested i n  t he  appearance 
of random f l u c t u a t i o n s  i n  the sound p res su re  l e v e l .  Observations i n d i c a t e  t h a t  
t h e s e  f l u c t u a t i o n s  i n c r e a s e  i n i t i a l l y  with propagation d i s t a n c e ,  bu t  tha t  a t  
longer  d i s t a n c e s  they approach a l i m i t i n g ,  or s a t u r a t i o n ,  va lue .  (See,  e.g., 
ref. 3, sec. I I I C . )  T h i s  s a t u r a t i o n  phenomenon, which is  a gene ra l  f e a t u r e  o f  
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wave propagation i n  a random medium and which is no t  amenable t o  a s ing le -  
s c a t t e r i n g  a n a l y s i s ,  has been the s u b j e c t  o f  a number of r e c e n t  t h e o r e t i c a l "  
i n v e s t i g a t i o n s .  (See, e.g., ref. 53 and r e f e r e n c e s  cited t h e r e i n .  ) 

Wind Gradien ts  

I n  the presence o f  wind, the  a n a l y s i s  o f  ground effects becomes very  d i f -  
f i c u l t  from a t h e o r e t i c a l  p o i n t  of view. However, i n  geometr ica l  configura- 
t i o n s  typical o f  ground-based engine n o i s e  measurements, the effects o f  a small 
wind vec to r  can be inc luded  by means o f  s i m p l i f i e d  a n a l y s i s .  The phase differ-  
ence frequency is determined by t h e  phase s h i f t  caused by the  ground r e f l e c t i o n  
and the  propagat ion  pa th  d i f f e r e n c e .  I n  the presence  o f  a wind vec to r ,  t h e  
d i f f e r e n c e  i n  average propagation v e l o c i t y  between t h e  direct  and the  reflected 
pa ths  w i l l  produce an a d d i t i o n a l  segment o f  path d i f f e r e n c e .  For a t y p i c a l  
boundary-layer p r o f i l e ,  t h i s  a d d i t i o n a l  pa th  d i f f e r e n c e  can be given as 

d l  0.3rv/c (28) 

where r is the h o r i z o n t a l  d i s t a n c e ,  c is the  speed o f  sound, and v is the  
wind-velocity component a long  the  d i r e c t i o n  from t h e  source  t o  t he  r e c e i v e r .  
I n  equat ion  (281, the  source and t h e  microphone are assumed t o  be a t  the same 
he igh t  above the  ground. According t o  r e c e n t  s t u d i e s ,  t he  dev ia t ion  o f  t he  
frequency f o r  maximum i n t e r f e r e n c e  a t t e n u a t i o n  can be approximately two-thirds 
octave on either s i d e  o f  t he  expected peak a t t e n u a t i o n  frequency. For practi- 
cal  a p p l i c a t i o n s  t h e  effect o f  wind on the  wave-propagation pa th  d i f f e r e n c e  
should be included i n  t he  computations o f  ground effects. 

CONCLUDING REMARKS 

A u n i f i e d  method has been recommended f o r  t he  p r e d i c t i o n  o f  ground effects. 
This  method is a p p l i c a b l e  t o  long-range sound propagation, c o r r e c t i o n  o f  data 
i n  engine t e s t - s t a n d  conf igu ra t ions ,  and aircraft  f l y o v e r  n o i s e  measurements. 
The r e s u l t s  given i n  t h i s  paper con ta in  s u f f i c i e n t  de ta i l  f o r  the purpose o f  
numerical c a l c u l a t i o n  o f  ground effects.  

S u f f i c i e n t  data are a v a i l a b l e  a t  t h i s  time t o  form a band o f  expected V a l -  
ues f o r  ground impedance f o r  common s u r f a c e s  such as g ras s l and ,  sand, and s o i l .  
Measurements from d i f f e r e n t  sources  seem t o  agree i n  genera l .  However , there 
is  a large var iance  o f  data s c a t t e r i n g .  I n  o rde r  t o  o b t a i n  more accu ra t e  data 
on ground impedance, methods o f  measurement should be improved. Furthermore, 
the  measurement o f  ground impedance us ing  e x i s t i n g  methods is  time consuming. 
Improved procedures may encourage r e s e a r c h e r s  to make on- s i t e  measurements o f  
ground impedance i n  conjunct ion  w i t h  a c o u s t i c  measurements. 

Theore t i ca l  a n a l y s i s  f o r  a p p l i c a t i o n s  t o  aircraft  no i se  p red ic t ion  is 
adequate f o r  t he  p resen t .  
and atmospheric p e r t u r b a t i o n s  on sound propagation n e a r  the  ground seems to  
provide the  p o s s i b i l i t y  o f  a better d e s c r i p t i o n  o f  the n a t u r a l  environment. 
Fur ther  research i n  the area o f  layered r e p r e s e n t a t i o n  o f  the  ground su r face  
may a l s o  be b e n e f i c i a l  t o  p r a c t i c a l  a p p l i c a t i o n s .  

However, the  a n a l y s i s  o f  coupled effects o f  ground 
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From an a n a l y t i c a l  po in t  of view and a l s o  from evidence shown i n  e x i s t i n g  
experimental  r e s u l t s ,  the recommended method appears  t o  be s u f f i c i e n t l y  accu- 
rate f o r  p r a c t i c a l  app l i ca t ions .  However, the  method should be va l ida t ed  
before  it is accepted for genera l  i n d u s t r i a l  a p p l i c a t i o n s .  Since improved 
instrumentat ion and faci l i t ies  of data a n a l y s i s  are now a v a i l a b l e ,  an experi-  
ment f o r  sound propagation over t he  ground wi th  c a r e f u l  documentation of ground 
impedance and atmospheric condi t ions  should be conducted. 

A va l ida t ion  program is b e n e f i c i a l  from another  po in t  of  view. I n  some 
f i e l d  measurements, the ground-impedance environment w i l l  not be known beyond 
a genera l  desc r ip t ion  of the phys ica l  appearance of the ground condi t ion.  I n  
t he  process of v a l i d a t i o n ,  experience can be gained so that a band of nominal 
va lues  f o r  var ious parameters can be recommended. Thus, an estimate of ground 
effects can be obtained i n  the absence of d i r e c t  information concerning the  
environmental f a c t o r .  

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
December 8, 1977 
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A P P E N D I X  

R E L A T I V E  IMPORTANCE OF PLANE WAVE APPROXIMATION 

A g e n e r a l  express ion  f o r  the sound p res su re  f i e l d  near  an impedance bound- 
a r y  can be g iven  as 

Symbols i n  equat ion  ( A I )  are def ined  the same as those  i n  t h e  main t e x t .  If 
the effect  o f  the s u r f a c e  wave is not  cons idered ,  then 

when lkr2v21 >> 1 and v cos 0 << 1 .  For sound propagation over a long ho r i -  
z o n t a l  d i s t a n c e ,  the  path-length d i f f e r e n c e  between the  direct  and the  reflected 
waves is very  small. Therefore 

and the  d i rec t  and the  reflected waves can be  combined i n t o  one term (ref.  31) 

IT 

2 
An ang le  0 '  can be def ined  such that  8' = - - 8. For a rece ive r  he ight  t h a t  

is small compared t o  t h e  source he igh t ,  or  converse ly ,  the  ang le  8' is 
approximately equa l  t o  t h e  e l e v a t i o n  angle  of  t he  source .  For small va lues  o f  
the  angle 8' 

kh 
COS 8 = s i n  8' z 8' =: - 

kr  

By s u b s t i t u t i n g  equa t ions  ( A 2 1  t o  ( A 5 1  i n t o  equat ion  ( A I ) ,  the  sound p res su re  
f i e l d  can be g iven  i n  a simple form 

P =  eikr - d k h v  + i( 
2srkr2(cos e + v)v[ cos  e + v 

It is clear from equat ion  (A6) tha t  the  combination of direct  and reflected 
waves given by equat ion  (A41 dominates when 
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APPENDIX 

This r e s u l t  leads t o  a number o f  i n t e r e s t i n g  conclus ions  as fo l lows:  

(1 )  Both the  combination term and the  ground-wave term (accord ing  t o  the 
d e f i n i t i o n  o f  ref. 27) a t t e n u a t e  a t  the  rate o f  r-*. These two terms are n o t  
s epa rab le  i n  measurements a t  long d i s t a n c e s  away from the sound source.  

(2)  If t h e  cond i t ion  s p e c i f i e d  i n  equat ion  ( A 7 )  is  met, t he  ground-wave 
term can be neglec ted .  The o v e r a l l  sound r e s s u r e  is d i r e c t l y  p ropor t iona l  t o  
the  e l e v a t i o n  ang le  only  when cos  8 << 1.p. 
effect is n e g l i g i b l e  f o r  
a n a l y t i c a l  b a s i s  f o r  t h e  empi r i ca l  methods f o r  e s t ima t ing  ground a t t e n u a t i o n  
by us ing  the  e l e v a t i o n  angle a lone .  For aircraft  i n - f l i g h t  s i d e l i n e  n o i s e  mea- 
surements, kh is normally large and equat ion  (A7) is sat isf ied.  However, t h e  
ground a t t e n u a t i o n  should be considered as a func t ion  o f  frequency s i n c e  t h e  
ground admittance is a func t ion  o f  frequency i n  most cases. 

(See eq.  (A4). ) The ground 
Therefore,  t h i s  equat ion  provides  an cos  8 >> ! V I .  

( 3 )  T h i s  a n a l y s i s  a l s o  provides  a limit t o  the  v a l i d i t y  o f  the  previous ly  
mentioned empi r i ca l  method. It should no t  be app l i ed  t o  t he  low-frequency 
range or under cond i t ions  where the su r face  wave may have a s t r o n g  in f luence .  

F i n a l l y ,  no te  t h a t  P i e rcy  e t  a l .  ( r e f .  31) poin ted  o u t  t h a t  t he  ground 
wave is a c o r r e c t i o n  o f  the s p h e r i c i t y  o f  the wave f r o n t .  Na tu ra l ly ,  the  
ground-wave term becomes less important a t  d i s t a n c e s  far from t h e  source  s i n c e  
the sound f i e l d  can be b e t t e r  approximated by a plane wave. 
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